Linear Algebra

From No Bullshit Guide to Linear Algebra by Ivan Savov.

Fundamentals

Exponentiation

  • \(a^{-b} = 1 / a^b\)
  • \(a^{1/2} = \sqrt{a} = \sqrt[2]{a}\)
  • \(a^{m/n} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}\)

Function inverses

function \(f(x)\)inverse \(f^{-1}(x)\)
\(x\)\(-x\)
\(x + 2\)\(x - 2\)
\(2x\)\(\frac{1}{2}x\)
\(3x + 5\)\(\frac{1}{3}(x - 5)\)
\(x^2\)\(\pm\sqrt{x}\)
\(2^x\)\(\log_2(x)\)
\(a^x\)\(\log_a(x)\)
\(exp(x) \equiv e^x\)\(ln(x) \equiv \log_e(x)\)
\(sin(x)\)\(sin^{-1}(x) \equiv \arcsin(x)\)
\(cos(x)\)\(cos^{-1}(x) \equiv \arccos(x)\)

Example:

  • \(\log_5(3 + \sqrt{6 \sqrt{x} - 7}) = 42 \theta\)
  • \(x = (\frac{1}{6}((5^{42 \ theta} - 3)^2 + 7))^2\)

Factoring

  • \(6x^2y + 15x = (3)(2)(x)(x)y + (5)(3)x = 3x(2xy + 5)\)
Links to this page